3.6.35 \(\int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx\) [535]

3.6.35.1 Optimal result
3.6.35.2 Mathematica [A] (verified)
3.6.35.3 Rubi [A] (verified)
3.6.35.4 Maple [B] (verified)
3.6.35.5 Fricas [F]
3.6.35.6 Sympy [F]
3.6.35.7 Maxima [F]
3.6.35.8 Giac [F]
3.6.35.9 Mupad [F(-1)]

3.6.35.1 Optimal result

Integrand size = 21, antiderivative size = 330 \[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {\sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d} \]

output
(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b) 
)^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a- 
b))^(1/2)/b/d+cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+ 
b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x 
+c))/(a-b))^(1/2)/d-b*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^( 
1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/ 
2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d
 
3.6.35.2 Mathematica [A] (verified)

Time = 10.17 (sec) , antiderivative size = 373, normalized size of antiderivative = 1.13 \[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right )} \sqrt {1+\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (2 (a+b) \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-4 b \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+4 b \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+a \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {3}{2} (c+d x)\right )-a \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )+2 b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{2 d (b+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \]

input
Integrate[Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]
 
output
(Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]*Sqrt[1 + Sec[c + 
 d*x]]*Sqrt[a + b*Sec[c + d*x]]*(2*(a + b)*Sqrt[(b + a*Cos[c + d*x])/((a + 
 b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + 
b)] - 4*b*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Elliptic 
F[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 4*b*Sqrt[(b + a*Cos[c + d*x 
])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], 
(a - b)/(a + b)] + a*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sec[(c + d*x)/2 
]*Sin[(3*(c + d*x))/2] - a*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + 
d*x)/2] + 2*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + d*x)/2]))/(2* 
d*(b + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]])
 
3.6.35.3 Rubi [A] (verified)

Time = 1.18 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {3042, 4344, 3042, 4547, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4344

\(\displaystyle \frac {1}{2} \int \frac {b-b \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {b-b \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4547

\(\displaystyle \frac {1}{2} \left (\int \frac {\sec (c+d x) b+b}{\sqrt {a+b \sec (c+d x)}}dx-b \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) b+b}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {1}{2} \left (-b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+b \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx+b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (b \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {1}{2} \left (b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {1}{2} \left (-b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {1}{2} \left (\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}+\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {2 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\right )+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}\)

input
Int[Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]
 
output
((2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d 
*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S 
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (2*Sqrt[a + b]*Cot[c + d*x 
]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)] 
*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b 
))])/d - (2*b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a 
 + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x 
]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*d))/2 + (Sqrt[a + 
 b*Sec[c + d*x]]*Sin[c + d*x])/d
 

3.6.35.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4344
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[Cot[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(2*d*n)   Int[(d*Csc[e + f*x])^(n + 1)*(Simp 
[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x]/Sqrt[a + b*C 
sc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && 
LeQ[n, -1] && IntegerQ[2*n]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4547
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]* 
(b_.) + (a_)], x_Symbol] :> Int[(A - C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x 
]], x] + Simp[C   Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f 
*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 
3.6.35.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1076\) vs. \(2(301)=602\).

Time = 3.80 (sec) , antiderivative size = 1077, normalized size of antiderivative = 3.26

method result size
default \(\text {Expression too large to display}\) \(1077\)

input
int(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/d*(-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(co 
s(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d 
*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos 
(d*x+c)^2-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2 
))*b*cos(d*x+c)^2+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)) 
^(1/2)*b*cos(d*x+c)^2-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2 
))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c) 
+1))^(1/2)*a*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1 
/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+ 
c)+1))^(1/2)*b*cos(d*x+c)-4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2 
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(( 
a-b)/(a+b))^(1/2))*b*cos(d*x+c)+4*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/( 
a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/( 
cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)+cos(d*x+c)^2*sin(d*x+c)*a-EllipticE(cot( 
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a-EllipticE(cot(d*x+c)-csc( 
d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*...
 
3.6.35.5 Fricas [F]

\[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right ) \,d x } \]

input
integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)
 
3.6.35.6 Sympy [F]

\[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int \sqrt {a + b \sec {\left (c + d x \right )}} \cos {\left (c + d x \right )}\, dx \]

input
integrate(cos(d*x+c)*(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a + b*sec(c + d*x))*cos(c + d*x), x)
 
3.6.35.7 Maxima [F]

\[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right ) \,d x } \]

input
integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)
 
3.6.35.8 Giac [F]

\[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right ) \,d x } \]

input
integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)
 
3.6.35.9 Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int \cos \left (c+d\,x\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2), x)